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Fermi gas model 
 

It is a statistical model of the nucleus. This model pictures the nucleus as a 

degenerate gas of protons and neutrons much like the free electron gas in 

metals. The gas is considered degenerate because all the particles are 

crowed into the lowest possible states in a manner consistent with the 

requirement of Pauli exclusion principle. In this case the nature of the 

microscopic particles is fully reflected in its effect on the ensemble as a 

whole. 

 

Nucleons are fermions having spin ½.  Thus the behaviour of the neutron or 

the proton gas will be determined by Fermi-Dirac statistics. In such a gas at 

0 K, all the energy levels upto a maximum, known as Fermi energy EF are 

occupied by the particles, each level being occupied by two particles with 

opposite spins.  

Neglecting for the moment, the electrostatic charge of the protons and 

supposing that the nucleus has N = Z = A/2. The nucleons move freely 

within a spherical potential well of the proper diameter with depth adjusted 

so that the Fermi energy raises the highest lying nucleons upto the observed 

binding energies. The potential well is filled separately with nucleons of 

each type, allowing just two particles of a given type with opposite spin to 

each cell in phase space of volume h3
. According to Fermi-Dirac statistics, 

the number of neutron states per unit momentum interval is 

                                      

where V is the volume of the nucleus. If is the limiting 

momentum below which all the states all filled. Obviously, the number of 

neutrons occupying momentum states upto this maximum momentum is 

obtained as 

we have                     

 
Therefore  

         ------(3) 
 

       

where is the nuclear volume which contains N particles 

(fermions) and M is the nucleonic mass. 

 

We have two different types of Fermi gas in the nucleus (i) the proton gas 

and (ii) the neutron gas. The respective numbers of protons and neutrons are 

Z and A - Z. Now, assuming that the number of nucleonic states to be equal 

to the nucleon number in each case, one obtains the density of states for the 

two gases as 

 

 



 

Lecture points of Dr. H R Sreepad, Associate Professor, Government College (Autonomous), Mandya Page 2 
 

Remembering that each state can be occupied by nucleons of opposite spins 

and substituting the above in (3), one obtains 

 
However, the number of protons (Z) and neutrons (A - Z) in an actual 

nucleus are not equal and hence N  being somewhat greater than Z. 

Obviously, the Fermi energies of the two types of nucleons are different. 

Now N > Z, (Ef)n > (Ef)p and hence the potential wells for the protons and 

neutrons have different depths, i.e. the former being less deep than the 

latter. The depth of the potential well is obtained as  

 
Here  fB=EB/A  is called the mean binding energy per nucleon (binding 

fraction) and is of the order of 8 MeV/nucleon for both protons and 

neutrons. Figure 5.1(b) exhibit Fermi gas model of nucleonic potential 

wells.  

 

Figure exhibits the difference in the depths of wells for neutron and proton.  

Fig:1                                 

 
From Figure 5.1(b), we note that the Fermi energies for both protons and 

neutrons are represented by the same horizontal line, corresponding to about 

8 MeV below the top of the potential well (Coulomb effect is neglected). 

One can visualize this that if these are at different depths below the top of 

the well, then the nucleons of one type from the higher Fermi level (say, 

neutrons) would make spontaneous transitions to the lower Fermi level for 

the other type (protons) by beta transformations. Obviously, the levels 

would ultimately equalize. 

Thus one finds the depth of the potential well approximately, 

Vo ~ 21 + 8 = 29 MeV 

We must note that the neutron depth is slightly greater than the proton 

depth. 

 

Let us now consider a hypothetical infinite medium of nuclear matter of 

uniform density in which the numbers of neutrons and protons are equal, i.e. 

N = Z and the Coulomb interaction of the proton is considered negligible. 

In this situation, one obtains from the semi-empirical binding energy Bethe-

Weizsackar relation 

 
Where EB is binding energy. Adding this to the depth of the potential well 

below the Fermi level, one obtains the depth of the potential well as 

Vo = 21 + 15.9 = 36.9 MeV/nucleon 

One expect that any successful theory of nuclear matter should be able to 

correlate the above value of Vo to the nature of internucleon nuclear force. 

 

We have so far assumed nuclear temperature to be T = 0 K corresponding to 

the ground state. When some excitation energy is supplied to the nucleus, 

then the thermal energy of the nucleus corresponds to T > 0 K. In this case, 

one can easily show that the total excitation energy is 

Et = Ep + En = 11(kT)
2
 MeV 

Since kT ~1 and hence Et  ~ 11 MeV. 

 

One can also obtain the energy density of the nuclear levels for a given 

excitation energy using the entropy relation: S = k ln W and thermodynamic 

expression for entropy. 

 

One cannot predict detailed properties of low lying states of nuclei observed 

in the radioactive decay processes from this model. This model is 

particularly useful in describing phenomena which are sensitive to the high 

momentum part of the nucleon spectrum. The model suggests that nucleon 

collisions often do not transfer small amount of momentum to the nucleus, 

because the nucleon momentum states near the origin are filled. However, 

this limitation does not affect collisions in which large momentum transfer 

takes place. Obviously, this statistical model helps to explain the properties 

of the nucleus in excited states. One can also treat the unbound states of 

heavy and medium nuclei with the help of this model.  


